2007年度日本政府(文部科学省)奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2007

学科試験 問題

EXAMINATION QUESTIONS

(高等専門学校留学生)

COLLEGE OF TECHNOLOGY STUDENTS

数 学

MATHEMATICS

注意 ☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

(2007)

MATHEMATICS

Nationality	No.
Name	(Please print full name, underlining family name)

- 1 Fill in the blanks with correct numbers or expressions.
 - 1) Solve the equation $8x^2 10x + 3 = 0$.

$$x = \boxed{1}$$

2) Solve the simultaneous inequality $\begin{cases} 2x^2 - 5x - 3 < 0 \\ 3x^2 - 4 - 11x \ge 0 \end{cases}$

3) Solve the equation $2\cos^2 x + 3\sin x - 3 = 0$ (0° $\leq x \leq 180$ °).

$$x = \boxed{3}$$

4) Solve the inequality $\log_3(2x-1) + \log_3(x-1) < 1$.

5) Let \vec{a} , \vec{b} be vectors such that $|\vec{a}| = 2$ and $|\vec{b}| = 3$. Suppose $\vec{a} - \vec{b}$ be perpendicular to $6\vec{a} + \vec{b}$. Find the angle between \vec{a} and \vec{b} .

6) Suppose α and 3α are roots of the quadratic equation $3x^2 + 8x + k = 0$, where k is a real constant. Find the value of k.

$$k = | \bigcirc$$

7) Let a be the integral part of $\frac{1}{2-\sqrt{3}}$ and b the decimal part (0 < b < 1). Calculate the value of $a-b+\frac{2}{b}$.

$$a-b+\frac{2}{b}=\boxed{?}$$

8) Let $\log_{10} A = a$ and $\log_{10} B = b$ for positive numbers A, B which are not equal to 1. Suppose a+b=0 . Find the value of $A^{\frac{1}{b}}B^{\frac{1}{a}}$.

$$A^{\frac{1}{b}}B^{\frac{1}{a}} = \boxed{8}$$

9) Let $\sin \alpha + \cos \beta = -\frac{1}{2}$ and $\cos \alpha + \sin \beta = \frac{\sqrt{3}}{2}$ for $0 < \alpha < \frac{\pi}{2}$ and $\frac{\pi}{2} < \beta < \pi$. Find the value of $\alpha + \beta$ by calculating $\sin(\alpha + \beta)$.

$$\alpha + \beta = 9$$

10) Let $a^{\frac{1}{2}} + a^{-\frac{1}{2}} = \sqrt{5}$. Find the value of $a + a^{-1}$.

$$a+a^{-1}=\boxed{0}$$

11) Calculate $\sum_{n=1}^{\infty} \left(\frac{9}{10}\right)^n$.

12) Calculate $\lim_{x\to 4} \frac{\sqrt{x}-2}{x-4}$.

13) Find the derivative $\frac{dy}{dx}$ of $y = (x+2)\sqrt{x}$. $\frac{dy}{dx} = \boxed{3}$

$$\frac{dy}{dx} = \boxed{3}$$

14) Calculate $\int_0^2 (x-1)^3 dx + 2 \int_{-1}^2 x (x-1) dx$.

2 Let
$$\mathbf{A} = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$$
, $\mathbf{E} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

1) Find the values of p, q which satisfy $A^2 + pA + qE = 0$.

2) Find the values of a, b which satisfy $x^n = (x^2 + px + q)Q(x) + ax + b$ where Q(x) is a polynomial and n is a positive integer.

3) Calculate A^n by substituting A for x and replacing E for 1 in $x^n = (x^2 + px + q \times 1)Q(x) + ax + b \times 1.$

- 3 Consider the functions $f(x) = \min\{x^3 + 1, 3 x\}$, $F(x) = \int_1^x f(t) dt$, where $\min\{p, q\} = \begin{cases} p & \text{(if } p \le q) \\ q & \text{(if } p > q) \end{cases}$.
 - 1) Sketch the graph of y = f(x).

2) Find the maximal value and the minimal value of F(x).